Introduction
callr::r_session
is a class for a persistent R session
that runs in the background and you can send commands to it. It extends
the processx::process
class, so all methods of that class
are still available for use.
Starting and terminating an R session
Use r_session$new()
to start an R session. By default
r_session$new()
blocks, it does not return until the R
session is up and running and ready to run R commands. If an error
happens during process startup, including an R error, then
r_session$new()
throws an error. A blocking
r_session$new()
waits at most wait_timeout
milliseconds for R to start up. wait_timeout
is by default
3000 milliseconds, which should be plenty. Typically R starts up in
about 100-300 milliseconds.
library(callr)
system.time(rs <- r_session$new())
#> user system elapsed #> 0.013 0.004 0.185
rs
#> R SESSION, alive, idle, pid 7443.
rs$get_state()
#> [1] "idle"
To terminate an R session, call its $close()
method:
rs$close()
rs
#> R SESSION, finished, pid 7443.
Just like processx::process
objects,
r_session
objects have a finalizer, and they will be
terminated when the R object that represents them is garbage
collected.
Non-blocking startup
If you don’t want to wait for the session to start up, then use
wait = FALSE
in r_session$new()
. If you do
that, r_session$new()
will still error if the OS cannot
start up the R process, but R errors will be reported
asynchronously.
system.time(rs2 <- r_session$new(wait = FALSE))
#> user system elapsed #> 0.005 0.000 0.006
rs2
#> R SESSION, alive, starting, pid 7454.
rs2$get_state()
#> [1] "starting"
You can use processx::poll()
to wait for the R session
being ready, with a timeout. The timeout can also be 0ms for a quick
check without waiting. This lets you do extra work in the main process
while the R process is starting up. It also lets you start up multiple
processes concurrently, see the next section.
#> [[1]] #> output error process #> "silent" "silent" "ready" #>
The important part of the output is the process
connection. This will be "ready"
if the R process is up and
running, or if an error happened. It will be "timeout"
if
it is not yet ready.
output
and error
will be
"ready"
if the R process emitted something to its standard
output and standard error, respectively. Usually these will be
"silent"
because we suppress R output during startup with
command line options. This can be changed via the options
argument and r_session_options()
.
Once processx::poll()
reports a "ready"
process
connection, you can call the
r_session$read()
method to see if the startup was
successful.
If r_session$$read()
reports “201 STARTED”, it is ready
to run R code:
rs2$read()
#> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result"
Options
You can use the options
argument of
r_session$new()
to change the default startup options.
options
must be a named list and it is best to create its
value with r_session_options()
. Pass the options you want
to change as named arguments to r_session_options()
. See
?r_session_options
for the details.
Here is an example that uses the load_hook
option to run
extra code right after R has started up:
opts <- r_session_options(
load_hook = quote({ message("I am running!"); Sys.sleep(1) })
)
rs3 <- r_session$new(wait = FALSE, options = opts)
processx::poll(list(rs3), 3000)
#> [[1]] #> output error process #> "silent" "ready" "silent" #>
rs3$read_error()
#> [1] "I am running!\n"
rs3$poll_process(3000)
#> [1] "ready"
rs3$read()
#> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result"
Use the $poll_process()
method to poll only the process
for being ready, without polling the standard output and error. Note,
however, that if the process generates enough output on stdout or stderr
that fills the pipe buffer between the processes, then it will stop
running, until the main process reads the pipe.
Running multiple R sessions
If you need to start several R sessions quickly, then it is best to
use wait = FALSE
and then processx::poll()
for
all processes until they are all ready.
num_procs <- 4
procs <- tibble::tibble(
session = replicate(num_procs, r_session$new(wait = FALSE), simplify = FALSE),
started_at = Sys.time(),
start_result = list(NULL)
)
limit <- Sys.time() + as.difftime(5, units = "secs")
while ((now <- Sys.time()) < limit &&
any(vapply(procs$session, function(p) p$get_state(), "") == "starting")) {
timeout <- as.double(limit - now, units = "secs")
pr <- processx::poll(procs$session, as.integer(timeout * 1000))
lapply(seq_along(pr), function(i) {
if (pr[[i]][["process"]] == "ready") {
procs$start_result[[i]] <<- procs$session[[i]]$read()
}
})
}
Sys.time() - procs$started_at
#> Time differences in secs #> [1] 0.2964342 0.2964342 0.2964342 0.2964342
procs$start_result
#> [[1]] #> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result" #> #> [[2]] #> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result" #> #> [[3]] #> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result" #> #> [[4]] #> $code #> [1] 201 #> #> $message #> [1] "ready to go" #> #> attr(,"class") #> [1] "callr_session_result" #>
Running code
r_session
objects have three methods to run R code:
-
$run()
is synchronous and omits standard output and error. -
$run_with_output()
is synchronous and collects standard output and error. -
$call()
is asynchronous and collects standard output and error.
Let’s use the 4 R sessions created above to demonstrate them.
$run()
is the simplest:
procs$session[[1]]$run(function() glue::glue("I am process {Sys.getpid()}."))
#> I am process 7474.
$run_with_output()
has the output as well:
procs$session[[1]]$run_with_output(function() {
message("I am process ", Sys.getpid(), ".")
head(mtcars)
})
#> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a34c3f919" #> #> $result #> mpg cyl disp hp drat wt qsec vs am gear carb #> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 #> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 #> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 #> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 #> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 #> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 #> #> $stdout #> [1] "" #> #> $stderr #> [1] "I am process 7474.\n" #> #> $error #> NULL #> #> attr(,"class") #> [1] "callr_session_result"
$call()
starts running the function, but does not wait
for the result:
invisible(lapply(procs$session, function(p) {
p$call(function() {
Sys.sleep(runif(1) * 2)
glue::glue("I am process {Sys.getpid()}.")
})
}))
procs$session
#> [[1]] #> R SESSION, alive, busy, pid 7474. #> #> [[2]] #> R SESSION, alive, busy, pid 7476. #> #> [[3]] #> R SESSION, alive, busy, pid 7481. #> #> [[4]] #> R SESSION, alive, busy, pid 7485. #>
Use processx::poll()
to wait for one or more sessions to
finish their job:
pr <- processx::poll(procs$session, 5000)
pr
#> [[1]] #> output error process #> "silent" "silent" "silent" #> #> [[2]] #> output error process #> "silent" "silent" "ready" #> #> [[3]] #> output error process #> "silent" "silent" "silent" #> #> [[4]] #> output error process #> "silent" "silent" "silent" #>
Then you can use the $read()
method to read out the
result (or error, if a failure happened):
for (i in seq_along(pr)) {
if (pr[[i]][["process"]] == "ready") {
cat("Process ", i, " is ready:\n")
print(procs$session[[i]]$read())
}
}
#> Process 2 is ready: #> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a58e4b309" #> #> $result #> I am process 7476. #> #> $stdout #> [1] "" #> #> $stderr #> [1] "" #> #> $error #> NULL #> #> attr(,"class") #> [1] "callr_session_result"
To wait for all processes to be ready, you can use a loop that is similar to the one we used above to start them. You might find this helper function useful as a starting point:
wait_for_sessions <- function(sess, timeout = 5000) {
result <- vector("list", length(sess))
is_busy <- function() {
vapply(sess, function(s) s$get_state() == "busy", logical(1))
}
limit <- Sys.time() + as.difftime(timeout / 1000, units = "secs")
while ((now < Sys.time()) < limit && any(busy <- is_busy())) {
towait <- as.integer(as.double(limit - now, units = "secs") * 1000)
pr <- processx::poll(sess[busy], towait)
for (i in seq_along(pr)) {
if (pr[[i]][["process"]] == "ready") {
result[busy][[i]] <- sess[busy][[i]]$read()
}
}
}
result
}
wait_for_sessions(procs$session)
#> [[1]] #> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a29e87ae7" #> #> $result #> I am process 7474. #> #> $stdout #> [1] "" #> #> $stderr #> [1] "" #> #> $error #> NULL #> #> attr(,"class") #> [1] "callr_session_result" #> #> [[2]] #> NULL #> #> [[3]] #> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a36d9f0e" #> #> $result #> I am process 7481. #> #> $stdout #> [1] "" #> #> $stderr #> [1] "" #> #> $error #> NULL #> #> attr(,"class") #> [1] "callr_session_result" #> #> [[4]] #> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a637ad6be" #> #> $result #> I am process 7485. #> #> $stdout #> [1] "" #> #> $stderr #> [1] "" #> #> $error #> NULL #> #> attr(,"class") #> [1] "callr_session_result" #>
Errors from a $run()
are turned into errors in the main
process:
#> Error: #> ! in callr subprocess. #> Caused by error in `library("not-a-package")`: #> ! there is no package called ‘not-a-package’ #> Type .Last.error to see the more details.
callr also adds two stack traces to the output, one for the main process and one for the subprocess:
.Last.error
#> <callr_error/rlib_error_3_0/rlib_error/error> #> Error: #> ! in callr subprocess. #> Caused by error in `library("not-a-package")`: #> ! there is no package called ‘not-a-package’ #> --- #> Backtrace: #> 1. rs$run(function() library("not-a-package")) #> 2. callr:::rs_run(self, private, func, args, package) #> 3. callr:::throw(res$error) #> --- #> Subprocess backtrace: #> 1. base::library("not-a-package") #> 2. base::stop(packageNotFoundError(package, lib.loc, sys.call())) #> 3. global (function (e) …
Errors from a $call()
are returned in the
error
entry of the result:
rs$call(function() library("still-not"))
rs$poll_process(2000)
rs$read()
#> [1] "ready" #> $code #> [1] 200 #> #> $message #> [1] "done callr-rs-result-1d0a336d8dc9" #> #> $result #> NULL #> #> $stdout #> [1] "" #> #> $stderr #> [1] "" #> #> $error #> <callr_error/rlib_error_3_0/rlib_error/error> #> Error: #> ! in callr subprocess. #> Caused by error in `library("still-not")`: #> ! there is no package called ‘still-not’ #> --- #> Subprocess backtrace: #> 1. base::library("still-not") #> 2. base::stop(packageNotFoundError(package, lib.loc, sys.call())) #> 3. global (function (e) … #> #> attr(,"class") #> [1] "callr_session_result"
Debugging
Debugging subprocesses is hard. r_session
objects have a
couple of methods to help you, but it is still hard.
Stack traces
As you have seen above, callr returns stack traces for errors, both for the main process and the subprocess. If your packages are installed with source references, then these include links to the source files as well.
.Last.error
For errors that are re-thrown in the main process, callr sets the
.Last.error
variable to the last error object. You can
inspect that after the error.
.Last.error$parent
contains the error object from the
subprocess. The error object often has additional information about the
error, e.g. processx::run()
includes the standard output +
error if the system process exits with a non-successful status:
#> Error: #> ! in callr subprocess. #> Caused by error in `processx::run("ls", "/not-this")`: #> ! System command 'ls' failed #> Type .Last.error to see the more details.
.Last.error
#> <callr_error/rlib_error_3_0/rlib_error/error> #> Error: #> ! in callr subprocess. #> Caused by error in `processx::run("ls", "/not-this")`: #> ! System command 'ls' failed #> --- #> Backtrace: #> 1. rs$run(function() processx::run("ls", "/not-this")) #> 2. callr:::rs_run(self, private, func, args, package) #> 3. callr:::throw(res$error) #> --- #> Subprocess backtrace: #> 1. processx::run("ls", "/not-this") #> 2. base::throw(new_process_error(res, call = sys.call(), echo = echo, … #> 3. | base::signalCondition(cond) #> 4. global (function (e) …
.Last.error$parent
#> <system_command_status_error/rlib_error_3_0/rlib_error/error> #> Error in `processx::run("ls", "/not-this")`: #> ! System command 'ls' failed #> --- #> Exit status: 2 #> Stderr: #> ls: cannot access '/not-this': No such file or directory
Inspecting the stack traces
Another way to inspect the stack trace in the subprocess is to set
the callr.traceback
option to TRUE
and call
the $traceback()
method after the error.
This option is off by default, because the stack trace sometimes contains large objects, that take a lot of time to copy between processes.
options(callr.traceback = TRUE)
rs <- r_session$new()
fun <- function() {
options(warn = 2) # convert warnings to errors
f1 <- function() f2()
f2 <- function() f3()
f3 <- function() {
vec <- 1:2
if (vec) "success"
}
f1()
}
rs$run(fun)
#> Error: #> ! in callr subprocess. #> Caused by error in `if (vec) "success"`: #> ! the condition has length > 1 #> Type .Last.error to see the more details.
rs$traceback()
#> 3: f3() at #4 #> 2: f2() at #3 #> 1: f1()
Inspecting frames of a stack trace
If the callr.traceback
option is TRUE
, then
callr saves the full trace, including the frames. You can then inspect
these frames with the $debug()
method. We can use it here
to debug the previous error:
Interactive debugging
You can use the $attach
method to start a REPL
(read-eval-print loop) that runs in the subprocess. It is best to do
this when the subprocess is idle, otherwise it is probably not
responsive.
Press CTRL+C or ESC, or type .q
and press ENTER to quit
the REPL.
Here is an example:
rs <- r_session$new()
rs$run(function() { .GlobalEnv$data <- mtcars; NULL })
#> NULL
This is an experimental feature and it does not always print the output properly, e.g. sometimes you need to press ENTER twice, but nevertheless it can be useful at times.
Communication protocol
The $read()
method can return messages with the
following code
s:
-
200
: the function is done. Note that the result might still be an error, you need to check that theerror
entry is notNULL
. -
201
: the R process is ready to use. This is the first message you get after a successful non-blocking startup. -
202
: attach is done. This is used internally by the$attach()
method, see the section about debugging below. -
301
: message from the subprocess. E.g. the cli package can generate such messages, see the cli documentation. -
500
: the R session exited cleanly. This means that the evaluated expression quit R. -
501
: the R session crashed or was killed. -
502
: the R session closed its end of the connection that callr uses for communication. This might also happen because it was killed or crashed.